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1 Introduction

In a market without frictions, corporate bonds compensate investors for the expected default

losses. It is well known that corporate bond market participants face important transaction

costs that get incorporated into credit spreads. However, current asset pricing literature does

not provide a framework for measuring transaction cost risk. This paper addresses this issue

by designing a framework that easily allows accounting for transaction costs that depend

on the size of the transaction. Using data on corporate bond transactions we show that

three transaction cost factors (small, medium, and large trades) are relevant time-varying

and persistent risks in corporate bonds.

The outstanding volume of $8 trillion in US corporate bond securities allow participants

to earn a higher yield than otherwise equivalent Treasury bonds. The average trading volume

in the US corporate market has significantly increased since the financial crisis under a period

of ultra-low Treasury rates. The investors traded on average $27 billion in 2015 in comparison

to the $ 18 billion in the early 2000s.1

This high increase in trading activity after the financial crisis indicates that there has

been a change in transaction costs across all the market. It has also been argued that the new

Basel III framework and the Volcker rule may increase immediacy costs in the bond market

as banks are taking less risk. Understanding the dynamics of the corporate bond market

transaction costs is important for liquidity risk assessment and monitoring. It is at the center

of regulators’ agenda to enhance liquidity risk management of financial institutions.

Broker-dealers are required by FINRA to engage in liquidity risk management practices

to enhance investor protection during times of stress where the trading costs may become

prohibitively expensive.2 Recently, in October 2016, the SEC adopted a ruling that requires

1Source: SIFMA
2See FINRA regulatory notice: https://www.finra.org/industry/notices/10-57 and

https://www.finra.org/industry/notices/15-33 .
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investment companies and open-ended funds to disclose information about the liquidity

risk of holdings.3 The new rule will allow funds to use “swing pricing” to pass on to the

purchasing and redeeming shareholders the trading costs. This protects existing investors

from the performance dilution they may suffer as a result of trading costs by other investors.

The new regulatory and electronic trading environment is headed towards a continuous

assessment of liquidity in OTC markets. The availability of real-time information in bond

markets also brings new challenges for participants to assess default risk effects and trans-

action costs. The current tools available do not allow for pricing in a high-frequency setting

as new information arrives. Here is why we believe that our approach provides new per-

spective in how to incorporate transaction-specific information into current pricing models.

The events of the last decade allow us to study the risk and persistence of transaction costs

under such stressed scenarios.

This article presents a new approach to modelling the term structures of defaultable

securities taking into account transaction costs associated with the size of a transaction.

Thus, our paper closely follows the key findings by Edwards et al. (2007) and Feldhütter

(2012) who uncover transaction size as an important determinant of transaction costs. Our

approach is different than existing models because it associates a time-varying risk factor to

the transaction costs of transactions at different transaction sizes.

Specifically, we assume that current transaction costs reflect the expected instantaneous

transaction costs until a bond matures. First, the model assumes that there are Markov

factors that generate uncertainty in the transaction costs. Second, we assume that the

instantaneous transaction cost is an affine function of the transaction cost factors. Third, we

provide a specific parametrization of the linear combination of transaction cost factors that is

able to map any transaction side (Buy or Sell) and any transaction size to an instantaneous

transaction cost. Fourth, we provide closed form solutions for the expected instantaneous

3The SEC rule press release can be found here: https://www.sec.gov/news/pressrelease/2016-215.html .
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transaction costs. Finally, we consider a Kalman filter with unequally spaced observations

to extract the unobserved factors.

In summary, this paper makes four contributions. First, it describes a new approach for

pricing corporate bonds with time-varying transaction costs. Second, we design a transaction

cost function in a reduced-form setting that is tractable, and has intuitive interpretations.

Our model accounts for three factors to explain the bond returns for different sizes of trades:

costs for large trades, the difference between large and small trades, and a medium size

factor. Third, we show that the transaction costs are a time-varying source of risk for

corporate bonds and that this risk is priced. Fourth, the empirical results provide evidence

that the transaction costs of retail trades are more persistent than the transaction costs of

institutional trades. This implies that the corporate market is segmented and retailers are

more exposed to illiquidity shocks that may persist much longer.

2 Contribution to Existing Literature

2.1 Pricing models with liquidity

Reduced-form models are convenient for the valuation of contingent claims subject to default

risk. Early on, Duffie and Singleton (1999) allow for a stochastic liquidity component in

the short-rate process. Identifying liquidity risk from corporate bond prices (or yields) is

challenging. When pricing corporate bonds using reduced-form models, there are several

existing approaches to identify liquidity risk. Within this framework, Driessen (2005) adds a

liquidity factor that is based on the yield spread of low-age and high-age portfolios and is an

important determinant of credit spreads. Longstaff et al. (2005) use information on credit

default swaps to extract the nondefault related components from corporate bond spreads.
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They find that this nondefault component ranges from about 20-100 basis points and it is

strongly related to the bid-ask spread.

Research on Treasury markets has extensively studied liquidity effects on Treasury mar-

kets. A well-known feature of this market is the on-the-run phenomenon. Goyenko et al.

(2011) uses quoted bid and ask prices to study the time-series dynamics of liquidity for

on-the-run and off-the run securities. They find that liquidity is significantly affected by

macroeconomic conditions and show that short-term become more liquid than long-term

securities during recessions. Fontaine and Garcia (2012) builds a term structure model for

Treasury securities with a liquidity premium that increases with maturity and decays with

the age of a bond.

Our approach builds on the existing models that account for a liquidity factor. However,

we model explicitly instantaneous transaction costs that consider the side of a transaction

(Buy or Sell) and the size of the transaction.

2.2 Transaction costs and transparency

As the market becomes more transparent with all the bond trades being recorded and publicly

disseminated, new research has been able to measure the effective transaction costs. Schultz

(2001) pioneered the research on corporate bond transactions and documented that trading

costs are smaller for larger trades. Later both Bessembinder et al. (2006) and Edwards et al.

(2007) showed that trading costs decreased as the market became more transparent and

provided further evidence that small trades pay much larger percentage trading costs than

large trades.

Despite the strong evidence showing that transaction size is a relevant key factor behind

corporate bond transaction costs, asset pricing literature has not being able to accommodate

transaction costs into pricing models. There is one exception to this. Feldhütter (2012)
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develops a search-based model and argues that the difference between the prices of small

trades and the prices of large trades reflect selling pressures. Under this search model

investors trade with a dealer at different search intensities, and the transaction size proxies for

the search intensity. Small trades represent unsophisticated investors (low search intensity),

and large trades are performed by sophisticated investors (high search intensity). In this

setting, the prices of large trades react stronger to selling pressure than small trades and

liquidity shocks are measured as months when the bid price difference between large trades

and small trades decreases.

Our approach is able to take into account the non-linear relationship between transaction

size and transaction costs as in Edwards et al. (2007) and further creates uncertainty in

this relationship, allowing transaction costs to be time-varying. More interestingly, the

model differentiates between transaction sizes and is able to directly measure the underlying

stochastic factor that drives the difference between the small and the large transactions that

has been identified by Feldhütter (2012) as a measure of selling pressures in the market.

3 Transaction costs

In this section, we describe the pricing model for bonds including transaction costs. Pt is

the transaction price and Vt is the unobserved “true value” of the bond at the time t of the

trade. Similarly to Edwards et al. (2007), we consider proportional transaction costs. As a

novelty feature, we consider customer costs ct and dealer costs dt that are time-varying and

uncertain. The variables Q and D indicate the direction of a trade. Customers may buy

(Q = 1) or sell (Q = −1) securities from dealers. And the direction of interdealer trades

may also be a buy (D = 1) or a sell (D = −1). In the case of an interdealer trade Q = 0,

and in the case of a customer trade D = 0.
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Pt = Vt +QtPtct +DtPtdt = Vt

(
1

1−Qtct

)(
1

1−Dtdt

)
(1)

If Pt is the price of a zero coupon bond, its yield to maturity would be given by equation

2. We can further decompose the yield into smaller components. The yield cost component

would reduce (increase) the bond yield due to the transaction cost of a customer bond

purchase (sale).4

yield = − log(P )

T − t
= − log(V )

T − t
+
log(1−Qc)

T − t
+
log(1−Dd)

T − t
(2)

To add flexibility and intuition to the cost function, we create an alternative model

based on the Nelson-Siegel-type function. An added advantage of this approach is that the

estimated coefficients have an easier interpretation. We want to arrive at a three-factor affine

model that matches a yield cost function of the form

yield cost = − log(1−Qc)
T − t

= Xt,LargeQt

[
1− e−κ1(T−t)

κ1(T − t)

]
+ Xt,SmallQt

[
1− e−κ2(T−t)

κ2(T − t)

][
1− e(

−St
ς1

)

St
ς1

]

+ Xt,MedQt

[
1− e−κ3(T−t)

κ3(T − t)

][
1− e(

−St
ς1

)

St
ς1

− e(
−St
ς1

)

]

− A(t, T )

T − t
(3)

4Throughout the paper, we will focus on customer trades as dealer trades can be modelled equivalently.

Notice that transaction data does not identify the direction of a trade between two dealers.
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The factors X represent the instantaneous transaction cost. Xt,Large may be viewed as

the cost for large investors. Xt,Small represents the cost difference between large and small

investors. And Xt,Med may be viewed as a factor for medium investors. The parameter ς sets

the boundary between the different types of investors. The correlation between the factors

captures price pressure spillovers. If the correlation between Xt,Large and Xt,Small is highly

negative, a decrease in transaction cost for large investors leads to an increase in transaction

costs for small investors.

The ratio (1− e−κ(T−t))/κ tends to 0 as we approach maturity and tends to 1/κ when we

get further from maturity. This captures the stylized fact shown in Edwards et al. (2007)

that transaction costs decline with the bond maturity, as bonds close to maturity have lower

proportional transaction costs than do other bonds due to the imminent redemption payment

and the low liquidity risk. The yield cost coefficient (1− e−κ(T−t))/(κ(T − t)) is close to 0 for

long maturities and approaches 1 near maturity. The parameter κ moderates the sensitivity

of the yield to instantaneous transaction costs as a function of the time to maturity. As we

will show later, the parameter κ measures the persistence of the state factor. Factors with

high values of κ exhibit a strong tendency to revert towards the mean. Small κ make short-

term securities to be more affected by an instantaneous transaction cost Xt that is above its

mean than for long-term securities. In other words, long-term securities are “immune” to

periods of high instantaneous transaction costs when they are likely to rapidly revert to their

mean. And highly persistent state factors with small κ make short- and long-term securities

equally affected by the level of the state factor.

The most prominent feature of our model is that it incorporates a coefficient that de-

pends on the size of the transaction St and a threshold level ς. Since the coefficient

(1 − e(−St/ς1))/(St/ς1) does not depend on the time to maturity, it captures the instanta-

neous cost of a transaction; as it will become clearer later once we delve into the model.

It is straightforward to see that this coefficient tends to 1 for a smaller transaction size,
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and becomes 0 for large transactions. The speed at which the coefficient moves towards 1

depends on the parameter ς1. Transactions smaller than ς1 will lead to a coefficient closer

to 1 and a larger impact on the yield cost. Since the first factor Xt,Large does not depend

on the transaction size, it represents the costs for large transactions. The second factor

Xt,Small becomes relevant for transactions smaller than ς, and the third factor reaches its

maximum in medium transactions above ς. Similarly to a Nelson-Siegel function used for

yields, the coefficients will capture different yields for different transactions —as opposed to

different maturities. The attractive feature of this model is that it captures non-linearities

between transaction size and transaction costs similarly to Edwards et al. (2007) whereas

adding interpretation to the non-linearities. Additionally, these coefficients are flexible and

accommodate different designs. These coefficients could be replaced by similar non-linear

transformations of the transaction size shown in Edwards et al. (2007), with the caveat that

the underlying factors lose the intuitive interpretation of our model. Next, we show in detail

how to arrive to such yield cost function in an affine arbitrage-free setting.

The yield-adjustment A(t,T )
T−t does not depend on the level of the state factors and it will

be defined later.

3.1 The transaction cost model

We define the transaction costs ct that depend on the size of the trade S. For each size,

there is an associated latent discount factor ` that decreases or increases the efficient price

V depending on whether the intention is to buy (Q = 1) or sell (Q = −1).

Definition 1. The time-t proportional transaction costs ct are given by

1−Qtct(Q,S, t, T ) = EQ
t

[
exp

(
−
∫ T

t

`u du

)
|`t, Qt, St

]
, (4)
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where EQ denotes expectation under the risk-neutral measure. An n-factor affine term

structure model is obtained under the assumption that the instantaneous transaction cost `

is an affine function of a vector of the state variables Xt

`t = ρ0(Q,S) + ρ1(Q,S)
ᵀ
Xt , (5)

where ρ0(Q,S) ∈ R and ρ1(Q,S) ∈ Rn are time-independent functions. These function

allow us to map any transaction side Q and transaction size S into an instantaneous trans-

action cost. The state variable Xt is assumed to be an “affine diffusion” Markov process

that solves the stochastic differential equation (SDE) under the risk-neutral dynamics,

dXt = KQ[θQ −Xt]dt+ ΣD(Xt)dW
Q
t (6)

WQ
t is an n-dimensional vector containing n independent standard Brownian motions

under Q, the vector θQ ∈ Rn contains the drift parameters, the mean reversion matrix

KQ ∈ Rn×n and the volatility matrix Σ ∈ Rn×n are matrices which may be non-diagonal

and asymmetric. While D ∈ Rn×n is a diagonal matrix that depends on the vector γ ∈ Rn

and δ ∈ Rn×n such that the jth diagonal element is given by

[D(Xt)]jj =
√
γj + δjXt ,

where the upper index j lists the rows and the lower index lists the columns in γj1 and δji .

In this framework, Duffie and Kan (1996) provide solutions to exponentially affine functions
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of the state variables.

EQ
t

[
exp

(
−
∫ T

t

`u du

)
|Θ
]

= exp(B(t, T )
ᵀ
Xt + A(t, T )) (7)

The principal payment at maturity does not contain any transaction cost associated

1 − QcT (Q,S, T, T ) = 1, which implies that B(T, T ) = 0 and A(T, T ) = 0. Parametric

assumptions are used to get an explicit solution to this PDE. And B(t, T ) and A(t, T ) are

solutions to the system of ordinary differential equations (ODEs or Riccati equations)

dB(t, T )

dt
= ρ1 + (KQ)

ᵀ
B(t, T )

−1

2

n∑
j=1

[Σ
ᵀ
B(t, T )B(t, T )

ᵀ
Σ]jj(δ

j)
ᵀ

, B(T, T ) = 0 (8)

dA(t, T )

dt
= ρ0 −B(t, T )

ᵀ
KQθQ

−1

2

n∑
j=1

[Σ
ᵀ
B(t, T )B(t, T )

ᵀ
Σ]jjγ

j , A(T, T ) = 0 (9)

The coefficients B(t, T ) and A(t, T ) can be easily computed numerically using Runge-

Kutta methods. However, they can only be computed in closed-form for specific cases. In

this paper we propose a parametrization of the equations 6 and 5 that leads to a yield

cost function of the form in equation 3. We model three unobservable state factors Xt,Large,

Xt,Small, and Xt,Med that affect the transaction discount factor ` depending on the transaction

side Q and the transaction size S. The instantaneous transaction cost ` depends linearly on

the state variables Xt,Large, Xt,Small, and Xt,Med, and provides non-linear relationship to the

transaction costs of large, small, and medium trades.

Then we can solve for the transaction costs under the assumption that they are expo-

nentially affine to the transaction state variables.
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Proposition 1. The instantaneous transaction cost is

`t = Xt,LargeQ+Xt,SmallQ

[
1− e(

−S
ς1

)

S
ς1

]
+Xt,MedQ

[
1− e(

−S
ς1

)

S
ς1

− e(
−S
ς1

)

]
(10)

with coefficients

ρ0(Q,S) = 0 and ρ
ᵀ
1(Q,S) =

[
Q Q1−e(

−S
ς1

)

S
ς1

Q

(
1−e(

−S
ς1

)

S
ς1

− e(
−S
ς1

)

) ]

and the system of SDEs for the state variables under the risk-neutral measure follow a

multivariate Ornstein-Uhlenbeck process


dXt,Large

dXt,Small

dXt,Med

 =


κ1 0 0

0 κ2 0

0 0 κ3





θQ1

θQ2

θQ3

−


Xt,Large

Xt,Small

Xt,Med


 dt+ Σ


dWQ

t,1

dWQ
t,2

dWQ
t,3



The solution to the system of ODEs is

B1(t, T ) = −ρ11
1− e−κ1(T−t)

κ1

B2(t, T ) = −ρ21
1− e−κ2(T−t)

κ2

B3(t, T ) = −ρ31
1− e−κ3(T−t)

κ3

A(t, T ) =

∫ T

t

B(s, T )
ᵀ
KQθQ ds+

1

2

∫ T

t

n∑
j=1

[Σ
ᵀ
B(s, T )B(s, T )

ᵀ
Σ]jjγ

j ds
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As a result, the following relationship holds for the transaction costs ct

log(1−Qct) = −Xt,LargeQ

[
1− e−κ1(T−t)

κ1

]
−Xt,SmallQ

[
1− e−κ2(T−t)

κ2

][
1− e(

−S
ς1

)

S
ς1

]

−Xt,MedQ

[
1− e−κ3(T−t)

κ3

][
1− e(

−S
ς1

)

S
ς1

− e(
−S
ς1

)

]
+ A(t, T )

Proof. See Appendix A �

The transaction costs are a weighted average of the three unobserved state factors and a

yield-adjustment A(t, T ) with closed-form solutions provided in the Appendix. Note that we

have chosen a Nelson-Siegel-type specification for the function ρ1(Q,S) that maps the state

factors into transaction costs c depending on the transaction side Q and the transaction size

S.

Even though the factors are not directly observable, with the loading structure designed

in our model, they can be clearly identified as immediate transaction costs for large, small,

and medium trades. The Figure 1 plots our chosen Nelson-Siegel-type rho weights of our

unobserved factors. The large factor is always present for any transaction size, and is the only

one that affects the costs of large transactions. The weight coefficient for the small factor

approaches a value of 1 for small transactions and decays for large transactions. And the

medium size factor reaches its maximum after the threshold ς1. In our empirical section, we

choose a threshold of $100,000 for retail trades. Our framework also allows the use of other

transformation function ρ1. For instance, one could consider polynomials or the non-linear

transformations of Edwards et al. (2007). With the caveat that using other transformation

functions will modify the interpretation of the extracted underlying factors Xt,j.

[INSERT FIGURE 1 HERE]
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3.2 Defaultable bond pricing model

Let’s consider a customer trade at time t

P (t, T ) = Vt

(
1

1−Qct

)
(11)

Now that we have modeled the transaction cost ct, we need to characterize the “efficient”

price V (t, T ) of a bond. The price V (t, T ) is generic and can accommodate either structural

or reduced-form pricing models. In this article we adopt the default intensity approach of

Lando (1998) and Duffie and Singleton (1999) since our main focus is on transaction costs

dynamics and not the underlying default mechanism.

The price of a default-free zero-coupon bond that matures at time T is given by

B(t, T ) = EQ
t

[
exp

(
−
∫ T

t

ru du

)]
(12)

We assume the existence of three latent dynamic factors similarly to Diebold et al. (2005),

Diebold and Li (2006), and Christensen et al. (2011). Specifically, we follow the independent-

factor arbitrage-free Nelson-Siegel (AFSN) of Christensen et al. (2011) where the risk-free

term structure depends on three factors. Namely, level (Levelt), slope (Slopet), and curvature

(Curvt). This model captures in a tractable way three important empirical features of

Treasury yields and it is shown to have a better predictive performance than comparable

models. Under this model, the three state variables are independent Vasicek processes under

the P-measure and restrictions are imposed under the Q-measure such that the risk-free spot

rate matches the dynamic Nelson-Siegel model of the form
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spotf (t, T ) = Levelt + Slopet

[
1− e−λ(T−t)

λ(T − t)

]
+Curvt

[
1− e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
− Ã(t, T )

T − t
(13)

Risky securities require a credit spread. In the reduced-form model of Duffie and Singleton

(1999), the default event is determined by the first jump of a Poisson process with stochastic

intensity hPt . And in case of a default event, the bond experiences a loss of L%. The value

of a risky bond is discounted by the risk-free rate and an instantaneous spread st

V (t, T ) = EQ
t

[
exp

(
−
∫ T

t

(ru + su) du

)
|Θ
]

(14)

This spread is the “risk-neutral mean-loss rate” st ≡ hQt L which accounts for both the

probability of default and the default loss. As our interest is not on the credit spread, st can

be parameterized directly without considering ht and Lt separately as it is done in Duffee

(1999) and Driessen (2005). In our empirical setting, we are fitting an efficient price for

each bond and not for a set of maturities for the same firm. Having only one process for

the credit spread and estimating the spread term structure by bond reduces significantly

the modelling pressure on the efficient price Vt and simplifies the estimation. As long as the

spread follows an affine model of the form in equation 6, it can easily be solved with the

well-known exponentially-affine model solutions summarized in equations 8-9.

The resulting model combines the effects of changes in the default-free interest rate, the

risk-neutral mean loss rate, and most importantly the transaction cost dynamics for different

transaction sizes.
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P (t, T ) = EQ
t

[
exp

(
−
∫ T

t

(ru + su) du

)]
EQ
t

[
exp

(
−
∫ T

t

−`u du

)]
(15)

This mimics the “default and liquidity-adjusted” model of Duffie and Singleton (1999)

that adds a stochastic carrying cost ` directly in the short-rate process st. The added

advantage is that we have given a structure to ` that depends on transaction state factors and

exploits transaction characteristics that are inferred from historical data. Our transaction

costs ` could also be embedded into the short-rate process. And in the case of a mean-

loss rate conditionally independent from the transaction costs, both approaches would be

equivalent.

If we assume that the three components (risk-free rate, default and costs) are conditionally

independent, the expectation in equation 15 is the product of three expectations for each

the three underlying components. The instantaneous interest rate rt, the default intensity

together with the loss-given default htL, and the transaction cost `t are assumed to be an

affine function of state variables. In the case of coupon bonds, the efficient value discounts

each cash-flow by the risk-free and the mean-loss rate, and afterwards the proportional

transaction cost is applied onto the efficient value (See Appendix B).

It is widely acknowledged that a large component of credit spreads does not only reflect

credit risk information. The current literature finds it difficult to reconcile credit risk models

with the observed credit spreads (see e.g. Huang and Huang, 2012). Elton et al. (2001) report

that almost half of the credit spread accounts for a non-default systematic risk component.

Collin-Dufresne et al. (2001) find that a single factor independent from credit and liquidity

factors is a relevant component of credit spread changes. In contrast, Longstaff et al. (2005)

use Credit Default Swap spreads to extract the default component in bond spreads and find
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that more than 50% of the corporate spread is due to default risk, whereas the non-default

component is strongly mean reverting and highly related to bond-specific bid-ask spreads.

In light of extensive studies showing the strong presence of illiquidity in credit spreads,

we believe that our transaction cost component can help understand to a higher extent the

time-varying properties of liquidity frictions faced by large as well as small investors. Using

quarterly bid-ask quotes from Bloomberg for large sample of bonds, Chen et al. (2007)

provide strong evidence that illiquidity explains half of the cross-sectional variation in credit

spreads. Using transaction data, Bao et al. (2011) explain that bid-ask spreads do not

capture to a full extent the illiquidity of corporate bonds. More interestingly, they find that

an aggregate illiquidity measure —constructed at monthly frequency as the cross-sectional

median price reversal— largely explains the time variation in yields spreads.

Similarly to Bao et al. (2011) and Hendershott and Menkveld (2014) we understand

the spread st as the fundamental or efficient spread in the absence of transaction frictions.

This efficient spread may embed other risks other than credit risk. We do not focus on the

components of the efficient spread, and we shift our interest to the component `t that reflects

the time-varying transaction costs that deviate bond rates from the efficient spreads.

4 Data and Estimation Method

4.1 Data

We download all bond trades for S&P500 firms. We merge TRACE, FISD, and COMPUS-

TAT. The dataset starts in July 2002 and finishes in July 2013. First, we identify the tickers

members of the S&P500. Second, we download all the corporate bond transactions of the

corresponding companies. We filter the corporate bond transactions to account for cancelled

and corrected trades. TRACE allows us to identify Buy trades, Sell trades, and interdealer
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trades, and also records the price and the size of each transaction. See Appendix D for a

detailed description of the database.

4.2 State-space formulation for the transaction cost model

We consider the following nonlinear state-space system:

Xt+h = F (Xt, ηt+h) (16)

yt+h = G(Xt+h,Θ) + εt+h , V ar(εt+h) = Ht+h (17)

where Xt+h is the unobserved state of the system, yt+h is the observed market price, and

h is the time interval between two observations. The first equation in this state-space model

is the transition equation. This transition equation reflects the discrete time evolution of the

state variables and represents a discretized equivalent of equation 6. The second equation is

the measurement equation is determined by the state vector and its measurement function

G is specified by our pricing model. The observation noise εt+h is normal with zero mean

and covariance matrix denoted by Ht+h. We take into account that the observation error

increases with the time between observations and we assume that Ht+h = hσ2
εINt+h , where

Nt+h is the number of transactions observed at a given time.

The transition equation approximates the state dynamics using the two first conditional

moments. This setup allows for QML estimation based on the Kalman filter. The conditional

mean and variance of the continuous-time affine model given in equation 6 are5

5More details about how to obtain the conditional moments of the affine model can be found in Fisher and

Gilles (1996), Fackler (2000), Duffee (2002), and the online appendix of Christoffersen et al. (2014). De Jong

(2000) shows how to calculate the mean and variance in the case of a diagonal mean-reversion coefficient
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Et(Xt+h|Xt) = (I − e−Kh)θ + e−KhXt (18)

V ar(Xt+h|Xt) =

∫ h

0

e−K(h−s)Σ diag(γ + δEt(Xt+s)) Σ
ᵀ
e−K

ᵀ
(h−s)ds (19)

We assume that the state noise ηt+h is normal with zero mean and covariance matrix

denoted by Qt+h. In particular, given a process with expected zero mean in equation 19,

the state covariance becomes Qt+h =
∫ h
0
e−K(h−s)Σ diag(γ) Σᵀe−K

ᵀ
(h−s)ds. The transition

equation over a discrete time interval, with length equal to h units of time, can be written

as

Xt+h = (I − exp(−Kh))θ + exp(−Kh)Xt + ηt+h , V ar(ηt+h) = Qt+h (20)

4.3 Estimation method

First we estimate the default-free bond model. Second, we estimate the defaultable bond

price with transaction costs. For this second step, we take the default-free estimates as given.

We use the Kalman filter approach to estimate the underlying stochastic factors. In

particular, we use the Unscented Kalman filter. The discretized state transition equation is

Gaussian, but the measurement equation is non-linear due to the presence of coupon pay-

ments before maturity. The Extended Kalman filter approximates the measurement equation

using a Taylor expansion. This approach becomes particularly undesirable in our setting, be-

cause there might be a long time between two observations worsening the performance of the

Taylor approximation. Instead we use the Unscented Kalman filter (see Julier and Uhlmann,

1997, 2004) that directly allows for nonlinearities. This method is computationally efficient

matrix. For the Gaussian model, the mean and variance are provided in Dai and Singleton (2002). We

calculate the mean and variance using the general analytical solutions provided by Fackler (2000).
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as we do not need to calculate derivatives for the linear approximation. In particular, we use

the square-root unscented Kalman filter of Van der Merwe and Wan (2001) that is numer-

ically stable and guarantees a positive definite state covariance matrix. For applications of

the UKF, we have as examples Chen et al. (2008), Fontaine and Garcia (2012), Doshi et al.

(2013), Christoffersen et al. (2014) and Elkamhi et al. (2014).

The Kalman filter also allows evaluating the log-likelihood function.

logL =
K∑
k=1

−Nk

2
log(2π)− 1

2
log|Fk| −

1

2
(Yk − Ŷ −k )

ᵀ
F−1k (Yk − Ŷ −k ) , (21)

where K is the sample size, Nk is the number of observations, the conditional covariance

matrix Fk is obtained with the product SŶkS
ᵀ

Ŷk
obtained from the square-root unscented

Kalman filter, and the difference Yt − Ŷ −k measures the prediction error.

We maximize this log-likelihood to estimate the parameters and extract the underlying

state factors. An interesting and relevant feature of our Kalman filter and the log-likelihood

is that we need to consider at each step the time between two observations. This is because

the observations are not equally spaced. Thus, the exact time between two observations is

used to generate the expected state in the next step, and the exact time to maturity is used

to generate the equilibrium price. As each bond contains a large number of observations,

maximizing the likelihood function directly is computationally very expensive. Instead, we

maximize the likelihood function indirectly using a Recursive Least Squares approach. We

design a Dual Kalman filter where the parameters are a stationary process with noise, and

we learn the value of the parameter vector iteratively with each observation. Under this

approach we search for the parameter vector that minimizes the prediction error. We run

the Dual Kalman filter multiple times, and ultimately we choose the set of parameters that

yield the best log-likelihood. This approach significantly reduces the computational burden
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as the likelihood gradient vector does not need to be estimated. See Appendix C for a

detailed formulation.

5 Empirical Results

5.1 The risk-free term structure

Before turning to the estimation of the transaction costs, we first need to measure the risk-

free discount curve that is going to be used for each observation taking into account the time

until the remaining cashflows. For the risk-free curve, we collect daily data for the constant

maturity 1-month, 3-month, 6-month, 1-year, 2-year, 3-year, 5-year,7-year, 10-year, 20-year,

and 30-year rates from the Federal Reserve. We have a total of 11 par rates. The bills

below 1-year maturity are assumed to pay one single coupon at maturity, and the remaining

securities pay coupons semiannually. By design, these securities are at par value and as a

result our measurement value is always 100 for all the maturities. At each day, each coupon

payment is discounted using the independent-factor AFNS model with the objective that

the present value equals 100. Our procedure consists on using a Dual Kalman filter to

minimize the mean-square error recursively. Table 1 reports the estimates of the risk-free

term structure. The estimated parameters displayed in Panel A. Similarly to Christensen

et al. (2011) the curvature factor exhibits the highest mean-reversion and volatility, whereas

the level factor exhibits the lowest mean-reversion and volatility. However, our estimates are

different since we are using a more recent sample period. The model performs remarkably

well in the daily dataset as we can observe in Panel B. The prediction errors are quite small

and below 1.6% of par value for all maturities. Short term securities show the lowest pricing

errors. For instance 1-month bills have a pricing error of $0.035 of par value and 30-year

Treasuries have a pricing error of $1.532 of par value. Naturally the longer maturities exhibit

21



a larger prediction error because they have a larger duration and thus they are more sensitive

to small changes in the discount rate.

[INSERT TABLE 1 HERE]

5.2 Transaction-based model estimates

To illustrate how the transaction costs have evolved over the last decade, we select the

CUSIP=459200BA8, one of the most liquid bonds issued by IBM. This is a 4.5% semi-

annual coupon paying bond that matures in November, 29th 2012.

The Figure 2 plots 34 thousand transactions recorded on this particular bond. Each

circle represents a transaction, and the size of the circle depends on the transaction sizes,

with larger circles identifying larger transactions. We can clearly observe that Buy prices are

frequently over the Sell prices. A common concern when calculating liquidity from historical

transactions is that transactions are recorded at different times. Thus, using prices recorded

at different times to measure liquidity might be misleading, especially in the case of illiquid

bonds with infrequent trades. As the price difference between distant trades may reflect

default information, and not liquidity, one should consider the time between observations.

We can also appreciate how the price difference between buys and sells is larger at the

beginning of the sample. This separation becomes much smaller near maturity, when the

security has a small number of coupons left and it converges rapidly to par value. The size

also seems to be a relevant characteristic as smaller trades tend to suffer extreme prices.

[INSERT FIGURE 2 HERE]

The empirical identification of the transaction cost factors depends on having enough

observations with different transaction sizes spread along the sample period. The observed

costs may be downward biased if the decision to trade depends on the transaction costs.
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Large investors may avoid large trades in times of high transaction costs and break up

a large trade into smaller trades whenever smaller trades face smaller costs. The summary

statistics in Table 2 show that the retail transactions account for a 79% of the trades, whereas

the large institutional trades represent a 7%. The remaining 14% fall into the medium size

category. Even though larger trades are a smaller proportion of the sample, the large factor

can always be identified from any transaction as it captures the baseline transaction cost of

any trade (ρ11 = ±1). The factors could also be biased if there were only buy trades for large

transactions and sell trades for small transactions, however, our sample has a fair balance of

buys and sells across different size buckets.

[INSERT TABLE 2 HERE]

The timing of the observation could also affect the state estimates if large trades and

smaller trades were observed at different time periods. This is not the case in our sample.

On average small trades are observed every 3.3 hours and large trades are observed every

1.58 days. To make sure that there is a fair representation of different sizes at different times,

we plot the volume of trades per quarter in Figure 3. Large trades are regularly observed in

each quarter. Small trades (27,007 trades) outnumber large trades (2,340 trades) but they

represent a much lower Dollar Volume. The retail trades account for $616 million whereas

the large trades represent $6.5 billion. Most of the volume traded by institutional investors

takes place near issuance. In the first quarter of 2013 only, near $700 million were exchanged

by large investors, which exceeds the amount traded by small investors during the whole

life of the bond. The empirical evidence shows that large trades were not replaced by retail

trades, or otherwise we would have seen a large Dollar Volume increase in small trades.

[INSERT FIGURE 3 HERE]

We estimate our model as described in the previous section, and as a result, the dynamics

of the state vector is revealed in Figure 4. The model correctly takes into account the time

23



between observations, the time to maturity, and the transaction costs for different transaction

sizes. We observe a large factor that is small at the beginning of the sample, but it increases

during the financial crisis. The small factor adds more costs for small transactions. The small

investors have suffered price pressures since the bond inception and during the financial crisis.

The medium factor takes its minimum during the early 2000s period of low monetary policy

interest rates.

[INSERT FIGURE 4 HERE]

One of the advantages of the instantaneous transaction costs is that we are able to

calculate the cost curve at any point in time using the estimated state values. The Figure

5 plots the equilibrium cost-size relationship. Similarly to the findings of Edwards et al.

(2007) the costs decrease with the size of the transaction. However, we are able to depict a

time-varying cost ct. Comparing 2005 with 2010 we can see that the costs decrease as we

approach maturity, consistent with the model predictions and preliminary evidence. It is

not a surprise to see that the crisis year of 2008 suffered some of the highest costs, with a

half-spread of 140 bps for a small transaction and 60 bps for a large transaction.

[INSERT FIGURE 5 HERE]

6 Transaction costs and the term structure

How relevant are the transaction costs to explain the term structure of interest rates? To

motivate the relevance of transaction costs in analyzing the term structure we can simply

return to equation 3. Broadly speaking we can consider two main effects driving the term

structure of transaction costs. The first one is a short-term effect that depends on how distant

the state factor is from its average. Periods of high levels of the state factors translate into

high transaction costs at short-term maturities. The second effect is a long-term effect
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captured by A(t, T ) that becomes more relevant for periods distant to maturity and mainly

captures the volatility of the state until maturity.

To illustrate the effect of transaction costs, we show in Figure 6 the term structure of

a representative investment grade company with an upward sloping yield curve. We choose

a set of parameters that summarize stylized empirical findings on transaction costs for the

IBM 4.75% bond and compare the costs faced by customer buys/sells under two scenarios.

A scenario of average transaction costs and a scenario of high transaction costs.

[INSERT FIGURE 6 HERE]

When the state vector lays on its average, the transaction costs tend to increase with

maturity, as the short-term effect is small and the long-term effect prevails. In this case,

the yield curve can deviate 19 bps from the efficient yield curve in the case of small trades.

However, in a period of high transaction costs, the short-term securities suffer much larger

transaction costs than long-term securities. In our example, the transaction costs can deviate

the yield by 90 bps from the efficient yield curve in the case of small buy trades of short-term

securities. The gap size between the market and the efficient yield mostly depends on the

persistence of transaction costs. Highly persistent transaction costs increase the deviation

from the efficient yields and the deviation propagates to higher maturities as it is more likely

that costs remain high for a longer time. In the case of low persistence, shocks are short-lived

and would have a minimum effect only on short-term yields.

More interestingly, the yield curve is diverse and depends on the size of a given transac-

tion. With smaller trades generally leading to higher transaction costs and larger deviations

from the efficient yield curve. The yield costs may be relative similar across maturities, but

not its absolute cost. The last two graphs show the price proportional costs as a function

of size and time to maturity. The absolute cost decreases with the transaction size, but

more importantly it depends on the time to maturity. There can be a difference of 100 bps
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between 10-year bonds and 5-year bonds in small trades. And during illiquid periods, the

transaction costs may become 12% larger.

7 Conclusion

This article models the transaction costs faced by different trade sizes in the corporate bond

market. Our model allows us to take into account the uncertainty in transaction costs faced

by any trade size. To our knowledge, transaction cost risk is yet unexamined in the asset

pricing literature. Our methodology specifies how transaction cost risk for different trade

sizes translates to asset prices.

We show evidence for the existence of three transaction cost factors faced by investors.

The first factor captures the costs faced by large investors. The second factor captures

the difference between small and large transactions. And the third factor accounts for the

movements in costs for medium trades.

Using a large dataset with past historical transactions we measure the underlying factors

and the model parameters. This can be used by market participants to create expectations

on transaction costs and predict future prices. Also, this allows creating a yield curve for

any specific transaction size.

The evidence shows that the underlying factors are highly time-varying. We find that the

liquidity is significantly affected by the market environment, particularly during the financial

crisis. The results are consistent with previous research showing that the transaction costs

are smaller for large transactions and for bonds nearer maturity. However, our costs are

dynamic and arbitrage-free. Most interestingly, retail trades suffer from costs that are more

persistent than for large trades. In other words, shocks have a longer lasting effect in the

case of retail trades. Thus, empirical work that value-weights trades will tend to neglect

retailers who are exposed to more damaging transaction cost risk.
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Given the large size of our dataset, we are currently estimating the model for each bond

in the sample, and we will provide detailed statistics about the large, small, and medium

factors in future versions of the paper.
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Figure 1: Transaction cost factor coefficients

The graph shows the coefficients for each transaction cost factor as a function of trans-
action size and assuming a size threshold of ς1 = $100, 000.
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Figure 2: IBM transaction sizes

The graph shows Buy and Sell Trades for bond IBM 4.75% 29/11/2012 with
CUSIP=459200BA8. There are a total of 34 thousand customer transactions.
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Figure 3: IBM transactions per quarter

The graphs shows the number and volume of trades per quarter by size categories for bond
IBM 4.75% 29/11/2012 with CUSIP=459200BA8. There are a total of 34 thousand customer
transactions.

(a) # Trades (b) Dollar Volume (millions)
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Figure 4: IBM transaction cost factors

The graph shows the underlying transaction cost factors for large, small and medium
trades using a total of 34 thousand customer transactions.
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Figure 5: IBM transaction cost function

The graph shows the cost function for three dates.
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Figure 6: Representative Investment Grade Bond

This graph shows the yield curve and the proportional costs for a set of maturities and
transaction sizes under two scenarios: an scenario of average transaction costs, and an
scenario of high transaction costs. We assume θ1=10 bps, θ1=10 bps, θ1=-5 bps, κ1=10,
κ2=8, κ3=7, σi=1 bps. Graphs (a) and (c) show a period of average costs where the state
variables are at their average Xt = θ. Graphs (b) and (d) show a period of high costs where
the “large” factor is 100 bps higher than its average Xt,Large = θ1 + 0.01, and the “small”
factor is 200 bps higher than its average Xt,Small = θ2 + 0.02.

(a) Yield Curve with average costs (b) Yield Curve with high costs

(c) Cost function with average costs (d) Cost function with high costs
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Table 1: The risk-free term structure

Panel A contains estimates for the independent-factor arbitrage-free Nelson-Siegel
model of Christensen et al. (2011). Panel B reports the root-mean-squared predic-
tion errors (RMSEs) and the measurement error standard deviations (ME SD). The
model is estimated on daily data for Treasury securities from July 2002 to June 2016
using the Dual Square-root Unscented Kalman filter approach described in Appendix
C. It is assumed that all interest rates are observed with i.i.d. measurement errors.

Panel A - Parameter estimates

λ κPLevel κPSlope κPCurv θPLevel θPSlope θPCurv σLevel σSlope σCurv

0.1995 0.4552 0.4889 1.3935 0.0360 -0.0263 0.0127 4 × 10−4 131 × 10−4 145 × 10−4

Panel B - Model performance

1 mth 3 mth 6 mth 1 Yr 2 Yr 3 Yr 5 Yr 7 Yr 10 Yr 20 Yr 30 Yr

RMSE (% par value) 0.0353 0.0816 0.1122 0.1600 0.5053 0.9441 1.4097 1.5458 1.4547 1.5858 1.5238
ME SD (% par value) 0.0343 0.0792 0.1050 0.1551 0.3858 0.6846 1.0629 1.2420 1.0439 1.1709 0.6363
Log Lkl -5.70 × 104

Table 2: Transactions summary

Summary statistics of transactions for the bond IBM 4.75% 29/11/2012 with
CUSIP=459200BA8.

Time between transactions (days)
Volume (mil. $) # Trans. % Trans. Average Std. Dev.

Buy 0-99K 308.6330 11177 32.6288 0.3315 0.7173
Sell 0-99K 307.5155 15829 46.2093 0.2339 0.6072

0-99K 616.1485 27007 78.8410 0.1373 0.4507

Buy 100-499K 592.3020 3155 9.2103 1.1738 1.6579
Sell 100-499K 328.6450 1776 5.1846 2.0746 2.4797

100-499K 920.9470 4932 14.3979 0.7509 1.1581

Buy ≥500K 3,113.0 1300 3.7951 2.8482 3.9172
Sell ≥500K 3,436.6 1039 3.0331 3.5600 4.5157
≥500K 6,549.6 2340 6.8311 1.5827 2.4153
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A Proof of Proposition 1

We set a constant volatility (δj = 0) and the ODEs for B(T, t) in equation 8 simplify to:

dB(t, T )

dt
= ρ1 + (KQ)

ᵀ
B(t, T ) , B(T, T ) = 0

This system of linear ODEs can be solved using the matrix exponential. First, we rear-

range the ODEs with the constant on the right-hand side. Second, we multiply the equation

by the matrix exponential e(K
Q)ᵀ(T−t). Third, it can be shown that d

dt
(e(K

Q)ᵀ(T−t)B(t, T )) =(
dB(t,T )

dt
− (KQ)ᵀB(t, T )

)
e(K

Q)ᵀ(T−t). Fourth, we integrate the equation. Fifth, we solve the

integral in the left-hand side. Last, we move B(T, T ) to the right-hand side.

dB(t, T )

dt
− (KQ)

ᵀ
B(t, T ) = ρ1(

dB(t, T )

dt
− (KQ)

ᵀ
B(t, T )

)
e(K

Q)ᵀ(T−t) = e(K
Q)ᵀ(T−t)ρ1

d

dt
(e(K

Q)ᵀ(T−t)B(t, T )) = e(K
Q)ᵀ(T−t)ρ1∫ T

t

d

ds

(
e(K

Q)ᵀ(T−s)B(s, T )
)

ds =

∫ T

t

e(K
Q)ᵀ(T−s)ρ1 ds

B(T, T )− e(KQ)ᵀ(T−t)B(t, T ) =

∫ T

t

e(K
Q)ᵀ(T−s)ρ1 ds

−e(KQ)ᵀ(T−t)B(t, T ) = −B(T, T ) +

∫ T

t

e(K
Q)ᵀ(T−s)ρ1 ds

Next, we solve for B(t,T). First, we left-multiply the equation above by −e−(KQ)ᵀ(T−t).

Second, we use the boundary condition. Third, we simplify by including the matrix expo-

nential inside the integral.
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B(t, T ) = e−(K
Q)ᵀ(T−t)B(T, T )− e−(KQ)ᵀ(T−t)

∫ T

t

e(K
Q)ᵀ(T−s)ρ1 ds

B(t, T ) = −e−(KQ)ᵀ(T−t)
∫ T

t

e(K
Q)ᵀ(T−s)ρ1 ds

B(t, T ) = −
∫ T

t

e(K
Q)ᵀ(t−s)ρ1 ds

If (KQ)ᵀ is nonsingular and ρ1 is time-independent, then the solution to the integral is

B(t, T ) =
(
(KQ)

ᵀ)−1 (
e−(K

Q)ᵀ(T−t) − I
)
ρ1

When (KQ) is a nonsingular diagonal matrix with diagonal elements κi, the solution

becomes:

KQ =


κ1 0 0

0 κ2 0

0 0 κ3

 =⇒ B(t, T ) =


−ρ11 1−e

−κ1(T−t)

κ1

−ρ21 1−e
−κ2(T−t)

κ2

−ρ31 1−e
−κ3(T−t)

κ3

 ,

which proofs our Proposition. Solutions can also be calculated when the matrix (KQ)ᵀ is

nonsingular using the Jordan form of (KQ)ᵀ. See the Appendix in Christensen et al. (2011)

for a particular example where (KQ)ᵀ is singular.

We can also solve for A(t,T) integrating the ODE in equation 9. First, we use the

boundary condition to solve for the constant C. Second, we replace the value of C to find

the definite integral that solves for A(t,T). Third, we use the integral on the ODE. Fourth,

we express the last term in matrix notation using the trace.
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A(t, T ) =

∫
dA(s, T )

ds
ds+ C

A(t, T ) = −
∫ T

t

dA(s, T )

ds
ds

A(t, T ) = −(T − t)ρ0 +

∫ T

t

B(s, T )
ᵀ
KQθQ ds+

1

2

∫ T

t

n∑
j=1

[Σ
ᵀ
B(s, T )B(s, T )

ᵀ
Σ]jjγ

j ds

Before we calculate the first integral in this equation, we need the indefinite integral of

B(t, T )ᵀ

∫
B(s, T )

ᵀ
ds = ρ

ᵀ
1

(
e−(K

Q)(T−s)(KQ)−1 − sI
) (
KQ)−1

Now we can replace the indefinite integral in the equation

A(t, T ) = −(T − t)ρ0 +
[
ρ
ᵀ
1

(
e−(K

Q)(T−s)(KQ)−1 − sI
) (
KQ)−1]T

t
KQθQ +

1

2
I

A(t, T ) = −(T − t)ρ0 + ρ
ᵀ
1

((
I − e−KQ(T−t)

)
(KQ)−1 − (T − t)I

)
θQ +

1

2
I (22)

Last, the second integral I can be calculated. First, we change the notation from sum-

mation
∑

to trace using a diagonal matrix diag(γ) whose diagonal elements are γ. Second,

we replace B(s, T ) and B(s, T )ᵀ with the solution previously calculated. Third, the Σᵀ can

be moved to the end using the cyclic permutation property of the trace of a matrix. Last,

we can move the integral inside the trace, leaving the time-independent matrix Σdiag(γ)Σᵀ

outside the integral.
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I =

∫ T

t

trace
(
Σ
ᵀ
B(s, T )B(s, T )

ᵀ
Σdiag(γ)

)
ds

=

∫ T

t

trace
(

Σ
ᵀ
(
e−(K

Q)ᵀ(T−s) − I
) (

(KQ)
ᵀ)−1

ρ1ρ
ᵀ
1

(
KQ)−1 (e−(KQ)(T−s) − I

)
Σdiag(γ)

)
ds

=

∫ T

t

trace
((
e−(K

Q)(T−s) − I
)

Σdiag(γ)Σ
ᵀ
(
e−(K

Q)ᵀ(T−s) − I
) (

(KQ)
ᵀ)−1

ρ1ρ
ᵀ
1

(
KQ)−1) ds

= trace

(∫ T

t

(
e−(K

Q)(T−s) − I
)

Σdiag(γ)Σ
ᵀ
(
e−(K

Q)ᵀ(T−s) − I
)

ds
(
(KQ)

ᵀ)−1
ρ1ρ

ᵀ
1

(
KQ)−1)

= trace
(

(I1 + I2 + I3 + I4)
(
(KQ)

ᵀ)−1
ρ1ρ

ᵀ
1

(
KQ)−1)

Inside this last expression there are four integrals that can be evaluated individually.

I1 =

∫ T

t

(
e−(K

Q)(T−s)
)

Σdiag(γ)Σ
ᵀ
(
e−(K

Q)ᵀ(T−s)
)

ds

I2 = −
∫ T

t

(
e−(K

Q)(T−s)
)

Σdiag(γ)Σ
ᵀ

ds

I3 = −
∫ T

t

Σdiag(γ)Σ
ᵀ
(
e−(K

Q)ᵀ(T−s)
)

ds

I4 =

∫ T

t

Σdiag(γ)Σ
ᵀ

ds

The integrals I2, I3 and I4 can be easily solved.

I2 =
(
KQ)−1 (e−KQ(T−t) − I

)
Σdiag(γ)Σ

ᵀ

I3 = Σdiag(γ)Σ
ᵀ
(
e−(K

Q)ᵀ(T−t) − I
) (

(KQ)
ᵀ)−1

I4 = (T − t)Σdiag(γ)Σ
ᵀ
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However, I1 is the product of two matrix exponentials and the symmetric matrix Qc =

Σdiag(γ)Σᵀ. If Qc is symmetric and positive semidefinite, we can use the solution provided

by Van Loan (1978). First, we substitute the limits of the integration to match the integral

in Van Loan (1978). Second, we define a block triangular matrix Z as a function of KQ and

Qc. Third, the integral can be calculated as the product of two submatrices of eZ(T−t). Here[
eZ(T−t)

]
1:n,n+1:2n

represents the upper-right block matrix of eZ(T−t).

I1 =

∫ T−t

0

(
e−K

Qs
)

Σdiag(γ)Σ
ᵀ
(
e−(K

Q)ᵀs
)

ds

Z =

 KQ Σdiag(γ)Σᵀ

0 −(KQ)ᵀ


I1 = e−K

Q(T−t) [eZ(T−t)]
1:n,n+1:2n

Now we can replace all the integrals I1, I2, I3 and I4 into I to finally obtain the complete

expression for A(t, T )

A(t, T ) = −(T − t)ρ0 + ρ
ᵀ
1

((
I − e−KQ(T−t)

)
(KQ)−1 − (T − t)I

)
θQ

+
1

2
trace

((
e−K

Q(T−t) [eZ(T−t)]
1:n,n+1:2n

+
(
(KQ)

ᵀ)−1 (
e−(K

Q)ᵀ(T−t) − I
)

Σdiag(γ)Σ
ᵀ

+Σdiag(γ)Σ
ᵀ
(
e−K

Q(T−t) − I
) (
KQ)−1

+(T − t)Σdiag(γ)Σ
ᵀ
)

( (
(KQ)

ᵀ)−1
ρ1ρ

ᵀ
1

(
KQ)−1 ))

42



B Coupon Bonds

In the case of a coupon bond, we assume each of the cashflows Cti received at time ti can be

considered as a zero-coupon bond. We can calculate the value of a single risky cash-flow Vti

using the approach described in Section 3.2. Thus, the final value V of the coupon bond is

the sum of each of the coupon values.

V (Ct1 , . . . , Ctn) =
tn∑

ti=t1

VtiCti (23)

C Kalman Filter Setup

Here we explain the estate estimation of the dynamic system in equations 16-17. We adapt

the Square-Root Unscented Kalman Filter (SRUKF) of Van der Merwe and Wan (2001) to

take into account that the conditional moments and the measurement equation need to be

modified in each iteration to adapt to the characteristics of each individual trade (transaction

side, transaction size, time between observations, and time to maturity).

In our setting, having a large number of transactions significantly increases the compu-

tational time to search for the optimal parameters in the QML estimation. In order to speed

up the search for the optimal estimates, we proceed as follows.

1. We run a rolling-window regression for each bond to initialize the parameter vector

Θ̂0 = (K̂0, θ̂0, Σ̂0).

2. We employ a Dual Kalman filter for learning the parameters. We run the Dual Kalman

multiple times recursively using as initial parameters those obtained in a previous step.

With each run we obtain improved estimates Θ̂1.
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3. We choose from the previous step the set of parameters Θ̂QML that yield the best

likelihood.

4. We extract the transaction cost factors using the final estimates Θ̂QML employing a

Kalman filter for state estimation.

C.1 Initializing the parameter vector

Taking logs on both sides of expression 1 we can calculate the log return rt+h between a

customer trade at time t + h and a previous customer trade at time t. We then replace

log(1−Qc) with the solution provided in Proposition 1.

rt+h = log(Vt+h/Vt)− log(1−Qt+hct+h) + log(1−Qtct)

rt+h = log(Vt+h/Vt)−B(t+ h, T )
ᵀ
Xt+h +B(t, T )

ᵀ
Xt + A(t, T )− A(t+ h, T )

rt+h = log(Vt+h/Vt)− ρ
ᵀ
1,t+h

((
e−K(T−t−h) − I

)
K−1

)
Xt+h + ρ

ᵀ
1,t

((
e−K(T−t) − I

)
K−1

)
Xt

+ A(t, T )− A(t+ h, T )

rt+h = log(Vt+h/Vt)− ρ
ᵀ
1,t+h

((
e−K(T−t−h) − I

)
K−1

)
Xt+h + ρ

ᵀ
1,t

((
e−K(T−t) − I

)
K−1

)
Xt

+ A(t, T )− A(t+ h, T ) (24)

To obtain initial parameters we create simple discrete approximation of the log-returns in

equation 24. This approximation ignores arbitrage-free principles. The only purpose of this

approximation is to measure initial values for the parameter vector and save computational

time in the QML estimation.

When we compare two adjacent trades, a large portion of the price difference will come

from the transaction side (buy or sell) and the transaction size, i.e. from the observable ρ1,t
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vector of a given trade. As time span between two adjacent trades is generally small (h→ 0)

we can approximate the log-return by

rt+h ≈ log(Vt+h/Vt) +
[
ρ
ᵀ
1,t+h − ρ

ᵀ
1,t

] ((
I − e−K(T−t))K−1)Xt + A(t, T )− A(t+ h, T )

The coefficient A(t, T ) mainly captures long-term effects and affects the long-term yields.

Since the coefficient usually decreases smoothly as we approach maturity, the difference

A(t, T )−A(t+ h, T ) tends to be small for two adjacent trades. Thus, we approximate it by

a constant and an error term. The efficient value log-return needs a cumbersome calculation

in the case of coupon bonds that can be simplified. For simplicity, we assume that the value

growth can be replaced with the growth (rf + CS) · (h) of an equivalent zero-coupon bond

with average yield to maturity of rf + CS. The yield to maturity is decomposed into a

risk-free rate rf and a credit spread CS and the excess log-return approximation becomes

rt+h − rf (h) ≈ α + CS(h) +
[
ρ
ᵀ
1,t+h − ρ

ᵀ
1,t

] ((
I − e−K(T−t))K−1)Xt + εt+h

or equivalently the following regression

rt+h − rf (h) = α + CS(h) +
[
ρ
ᵀ
1,t+h − ρ

ᵀ
1,t

]
β + εt+h

were βi = 1−e−κi(T−t)

κi
Xt,i. We run this regression using non-overlapping rolling-windows

and obtain a time series of ĈS and β̂ estimates. It is straightforward to see that the

beta estimates contain information about the level of the state factors as well as the mean-

reversion and the time to maturity. Thus, an empirical model based on this regression will
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lead to betas that decrease as we approach maturity, consistent with empirical evidence

found in the related literature.

We invert the betas, and represent the state values as a function of the betas.

Xi,t+h = βi,t+hκi
1

1− e−κi(T−t−h)

Xi,t = βi,tκi
1

1− e−κi(T−t)

To construct a first estimate of the mean-reversion parameters, we start from the dis-

cretization of the state vector in equation 20. We replace the estate value with the betas,

and we get an expression that depends on the time series of betas.

Xi,t+h = (1− e−κih)θ + e−κihXt + ηi,t+h

βi,t+hκi
1

1− e−κi(T−t−h)
= (1− e−κih)θ + e−κihβi,tκi

1

1− e−κi(T−t)
+ ηi,t+h

where ηi,t+h are iid normal with zero mean and variance σ2
η = σ2(1− e−2κih)/(2κi).

We organize the terms in the last expression and we obtain an autoregressive represen-

tation of the betas

βi,t+h = (1− e−κih)θ + e−κihβi,tκi
1

1− e−κi(T−t)
+ ηi,t+h

βi,t+h =
1− e−κi(T−t−h)

κi
(1− e−κih)θ︸ ︷︷ ︸

b0

+ e−κih
1− e−κi(T−t−h)

1− e−κi(T−t)︸ ︷︷ ︸
b1

βi,t +
1− e−κi(T−t−h)

κi
ηi,t+h︸ ︷︷ ︸

εi,t+h

We then start the search for the parameter vector using

46



κ0i = b−11 (b̂1)

θ0i = b̂0
κ0i

(1− e−κ0i (T−t−h))(1− e−κ0i h)

C.2 Dual Kalman filter for state and parameter estimation

In a second step, the Dual Kalman filter is used to learn about the parameters w ∈ Θ.

The Dual Kalman filter requires setting a new state-space system for the parameters. We

run sequentially two UKFs: one for estate estimation at time k using previous parameter

estimates ŵk−1, and other for parameter learning using the current state estimate X̂k.

Xk = F (Xk−1, ηk)

yk = G(Xk, ŵk−1) + εk

In the parameter UKF, the parameters wk are a stationary process with noise rk, and

the observation yk is a nonlinear transformation of the parameters given an estimate of the

state vector.

wk = wk−1 + rk

yk = G(X̂k, wk) + ek

We employ the Square-Root Unscented Kalman filter outlined in the next section C.3 for

both the state and the parameter systems. The time-update step in the case of the SRUKF
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for parameter estimation greatly simplifies the computation because the system is linear.

Particularly, the predicted parameter is ŵk = ŵk−1 and the noise square-root covariance

becomes S−k =
√
λRLSSwk−1

, where λRLS is a scalar weighting factor slightly smaller than 1

that accounts for the dependence from the previous covariance.

C.3 Square-root Unscented Kalman filter

This section outlines the Square-Root Unscented Kalman filter employed for state and pa-

rameter estimation.

First, we initialize with the unconditional moments from equations 18 and 19 using an

initial set of parameters Θ̂. In the case of the Dual Kalman filter for parameter learning we

start with Θ̂0 and iteratively obtain a new set of improved estimates. In the final step, we

would start with the optimal parameters Θ̂QML run the following filter.

X̂0 = E[X0] S0 = chol
{
E[(X0 − X̂0)(X0 − X̂0)

ᵀ
]
}

(25)

For k ∈{1,. . . , last observation},

The process noise covariance and the measurement noise covariance in each iteration are:

Rv
k = Qt+h (26)

Rn
k = Ht+h (27)

Calculate sigma points:
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Xk−1 = [X̂k−1 X̂k−1 + γSk X̂k−1 − γSk] (28)

Time update:

X ∗k−1 = F [Xk−1] (29)

X̂−k =
2L∑
i=0

W
(m)
i X ∗i,k|k−1 (30)

S−k = qr

{[√
W

(c)
1 (X ∗1:2L,k|k−1 − X̂−k )

√
Rv
k

]}
(31)

S−k = cholupdate
{
S−k , X̂∗0,k − X̂−k , W

(c)
0

}
(32)

Xk|k−1 = [X̂−k X̂−k + γS−k X̂−k − γS
−
k ] (33)

Yk|k−1 = H[Xk|k−1] (34)

Ŷ −k =
2L∑
i=0

W
(m)
i Y∗i,k|k−1 (35)

Measurement update equations:

SŶk = qr

{[√
W

(c)
1 (Y1:2L,k − Ŷ −k )

√
Rn
k

]}
(36)

SŶk = cholupdate
{
SŶk , Y−0,k − Ŷ

−
k , W

(c)
0

}
(37)

PXkYk =
2L∑
i=0

W
(c)
i [Xi,k|k−1 − X̂−k ][Yi,k|k−1 − Ŷ −k ]

ᵀ
(38)

Kk = (PXkYk/S
ᵀ

Ŷk
)/SŶk (39)

X̂k = X̂−k +Kk(Yk − Ŷ −k ) (40)

U = X̂kSŶk (41)

Sk = cholupdate
{
S−k , U , −1

}
(42)
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D Databases

We briefly describe how we have created the dataset used in this paper using TRACE, FISD,

and COMPUSTAT. The stock tickers provided in these datasets cannot be used to merge

COMPUSTAT with TRACE. There are usually discrepancies across datasets due to mergers,

spin offs, and other reasons. Another difficulty is that the CUSIP number from each bond

may not identify the company, but a subsidiary. As a result, many companies have issued

bonds under different CUSIPs.

The companies are manually merged. First, we download the firms members of S&P by

the stock Ticker. Second, we manually select from TRACE and FISD the bond CUSIPs

that belong to each stock Ticker. Third, we manually find the PERMNO that identifies

each stock in CRSP. Fourth, we manually find the GVKEY that identifies each company in

COMPUSTAT.

� TRACE database. We download all the corporate bond transactions available for

the firms members of the S&P500. We use all trades in TRACE Enhanced until the

end of 2012, and we use TRACE database from 2013 onwards. Similarly to Rossi

(2014) and Back and Crotty (2014), we follow the next steps to clean the dataset:

1. Clean same-day corrections and cancelations. The database identifies each trans-

action with a message sequence number that is unique in each reporting day. The

correction and cancelation reports also include a message sequence number that

refers to the original report. We delete the original trade report identified by the

message sequence number, delete the cancelation reports, and replace the original

reports with the matched correction report.

2. Reversal trades. A Reversal is a cancellation of a trade report originally submitted

on a previous day. We remove the reversal trades and the matching original report.

We identify the Reversal trades and the original trade matching trades with the
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same CUSIP, Quantity trade, Price, Execution Date, Execution Time, Buy/Sell

Indicator, and Contra Party Indicator. Often, trades cancelled with a Reversal

trade are then replaced with an As-of trade. We keep the ‘As-Of’ trades that

correct cancelled trades when available. The remaining ‘As-Of’ trades that have

not been matched are removed because they have originated after the execution

date.

3. Delete the buying side of Inter-dealer transactions and keep the Inter-dealer Sells,

because both reflect two sides of the same trade.

4. Delete unusual trades. We eliminate trades that include commission, Halt trades,

trades reported after hours, delayed dissemination trades, reversals of delayed

dissemination trades, special trade condition trades, trades that were not dissem-

inated and trades on a ‘When issued’ basis. We keep trade corrections that were

reported after hours.

5. Eliminate extreme prices. First, we keep observations with prices between $1 and

$500. Second, we delete observations of a bond with a price that deviates more

than 20% from the median price of the day. Third, we eliminate observations

that within a day are preceded and followed by a 20% change in price. Fourth,

we keep trades that satisfy

|p−med(p, k)| ≤ 5 ∗MAD(p, k) + $1

where med and MAD are the centered median and median absolute deviation of

k = 20 observations with prices surrounding a given transaction price p.

6. Keep bonds traded on 20 distinct days.

� FISD database. We use the files MATOUT, AOUTHIST, COUPINFO, ISSCUSIP,

ISSUE, ISSUER, ISUCUHST, NAMEHIST, RATING, and RATNGHST.
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1. We merge the filtered bond transactions with FISD files using the CUSIP

2. Drop convertible debt, putable debt, redeemable debt, and variable coupon debt.

3. We calculate Accrued Interest. We calculate the accrued interest until the set-

tlement date. Often the bonds trade with T+3 settlement, meaning that the

settlement takes place 3 business days after the trade execution. Business days

are from Monday to Friday with the exception of the holidays and observations

announced by FINRA.

4. We calculate the average rating by firm. We translate the ratings to a numeric

scale with a score of 21 for the highest rating (Aaa and AAA) and a score of 1 for

the lowest rating (C, D, DD and DDD). First, we calculate the daily average rating

of a bond using the ratings from Moody’s, S&P and Fitch. Second, we calculate

the average rating of a firm weighting the bond ratings with the outstanding

amount. Third, we apply a single-exponential smoothing with an alpha of 10%

on the weighted average rating to alleviate the large jumps in the average credit

rating due to new bonds entering or old bonds exiting the portfolio of outstanding

bonds of a firm.

� COMPUSTAT database. We merge TRACE identifiers with COMPUSTAT to

obtain accounting information from issuing firms.
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